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Abstract

The advancement of neural networks in learning from data-driven priors has opened
up new possibilities in data interpretation and representation learning. While humans
effortlessly convert observations into structured forms, a key facet of intelligence, arti-
ficial neural networks still rely on certain simplifications to manage this complex task.
This work considers the lack of a unified approach to represent information across the
diverse realms of 3D and 2D scenes.

This thesis presents different architectural inductive biases to obtain novel capabilities
for images and 3D scenes. The models demonstrate new representations of spatial ob-
jects in different domains: general static 3D scenes, human avatars, and images. We
investigate the new problem of translating high-resolution images from unpaired data.
Then we show how to bypass the importance of architectural prior in the problem of im-
age synthesis, particularly emphasizing positional encoding and its impacts. Employ-
ing generative adversarial networks, we demonstrate the efficient novel-view synthesis
for arbitrary scenes. The pioneering scene representation allows estimate accurate re-
construction from the sparse input, and we introduce methodologies for novel view
synthesis through self-improving adaptive scene representations and error correction
techniques. Then close the gap between 3D and 2D methodologies, facilitating control
over three-dimensional human head representations without the reliance on explicit
multi-view datasets. Initially concentrating on the creation of 3D head avatars, the re-
search investigates mesh-based proxy structures for realistic avatar generation. The the-
sis further extends its exploration to high-resolution synthesis of human avatars with
latent control, pushing the boundaries of what is possible in this domain
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Introduction

The recent progress of neural networks in learning prior information from data has led
us to believe that we can learn any representation from data, just as humans do. The
ability to convert observations of the world into structures implicitly is a key aspect of
intelligence. However, while this may be simple for humans, in artificial intelligence, we
still need to introduce some shortcuts to simplify the learning process. There is currently
no unified approach to achieving this, and even representing similar information in 3D
and 2D scenes requires different techniques.

This thesis is presented as a line of works that proposes different architectural induc-
tive biases to unveil novel capabilities for image processing and 3D scene representa-
tion. The manuscript introduces various approaches to learning scene representations
with the priors over the content of large-scale data learned with the usage of genera-
tive adversarial networks. Furthermore, the research extends this line to encompass
human-specific video data, bridging the gap between 3D and 2D approaches, and en-
abling control over human head representations in three dimensions without explicit
multi-view datasets.

1.1 Motivation

A scene in the context of images, videos, and 3D environments is a complex construct
that integrates physical attributes, environmental structure, temporal dynamics, emo-
tional contexts, and cultural and social contexts. In recent years, significant advance-
ments in analyzing scenes were made, including recognizing patterns [27; 39], under-
standing geometry [5], texture, and lighting. One of the key elements is a representation
of such a scene for further processing. In the domain of images, scene representation in-
volves interpreting and structuring visual data at the pixel level, recognizing and extract-
ing information about objects, backgrounds, lighting, and spatial relationships. Deep
learning has revolutionized this field, enabling algorithms to extract complex patterns
from pixels to feature vectors, tensors, or other formats.
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Images, as 2D scenes, can be accurately described as projections of 3D scenes, where the
depth and spatial relationships of objects are rendered (mapped) to the flat plane. Scene
representation in 3D deals with structuring data in three-dimensional space, where we
have more effects that need to be represented, the simple way is to define point clouds
which are sets of data points in space representing object information. Deep learning
models process these point clouds to reconstruct and understand 3D scenes, such as cre-
ating detailed 3D models of urban landscapes. Another approach in 3D is using voxels,
the 3D equivalents of pixels, to represent scenes in a grid-like structure for detailed and
volumetric representations. Alternatively, we can define the scene as a continuous rep-
resentation, where each point of the space is mapped through a function to represent
the properties.

The task of constructing scene representations, in both 2D and 3D, is inherently com-
plex due to the high dimensionality and variability of the data. Challenges arise from
the need to manage diverse content, cope with varying conditions, filter out noise, and
even have a realistic perception. All these factors demand substantial computational
power and sophisticated algorithms to effectively understand and interpret the content.
This complexity is what drives researchers in the field to continually develop and re-
fine methods, making scene representation a dynamic and challenging domain in the
intersection of computer vision and deep learning.

Any scene, whether it is 2D or 3D, can be learned from data directly, either as pixel
representations or voxel representations, respectively. When we want to model certain
distributions and learn priors from datasets, we are trying to efficiently extract or com-
press the scene information from the data. Direct learning of the image will require a
separate pixel grid with N2 parameters for each object in the data. Alternatively, the
popular way in deep learning is to encode images into vectors for further analysis or
even decode back to compress as much information as possible. The encoder-decoder
architecture in autoencoders shows an example of inductive bias in deep learning by
incorporating specific assumptions about data processing and representation, such as
hierarchy of features and reconstructability. This architecture assumes that data can be
understood and represented in a hierarchical manner, where the essential information
can be distilled and represented in a lower-dimensional space. The meaningful patterns
are those that contribute to a faithful reconstruction of the input when passed through
the decoder.

Inductive bias is considered to play an important role in representing 2D and 3D scenes
in machine learning [2; 17], as it can help improve efficiency and extend generalization.
These biases, which are essentially the set of assumptions a learning algorithm makes
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about the data, guide the learning process and enable the algorithm to efficiently in-
terpret complex scenes, requiring fewer examples to understand underlying structures.
This aspect is particularly vital in 3D scene representation where the potential data and
variations are enormous. Inductive biases help the algorithm to generalize from the
training data to unseen scenarios, thus predicting and understanding new scenes with
greater accuracy. Moreover, they are crucial in handling ambiguities and noise in real-
world data, providing a framework for interpreting such data, especially in 3D where
the complexities are perspective, shadows, and occlusions. Specific biases, such as those
understanding spatial relationships and depth perception, are particularly beneficial
for scene representation. These biases not only reduce the computational resources re-
quired due to their structured approach to learning but also facilitate transfer learning,
where a model trained on one type of scene can be adapted to another. This founda-
tional understanding is adaptable for different types of scenes and supports complex
tasks like autonomous driving, robotics, or virtual reality, where understanding and
interacting with 2D/3D environments are critical.

Despite the vital importance of inductive biases for understanding the scene, in the
generative tasks it can be the important piece to connect 2D and 3D, for example. We
consider a popular task in generating 2D scenes - the generation of an image from the
corresponding semantic map, where each pixel represents a class. The obtained results
in the first attempts on the usage of generative adversarial networks already showed
high quality to this task [35]. However, the results cannot be transferred to the case of a
consistent generation of different views across a scene represented by a set of semantic
maps (e.g. different camera views), mainly due to the high ambiguity of the input. To
ensure that the table given on the stage, for example, can be generated consistently, we
can add a fairly simple multi-view constraint in the underlying representation used as
generator [19], which will be the inductive bias in the model. During the training of such
a model, we explicitly will treat the scene as a 3D object and infuse the scene consistency
by rendering it into different cameras.

Similarly, to produce realistic images and motions of humans we learn representations
of digital human avatars with the existing advancements in 3D graphics to describe
the head or body functionally and determine a neural rendering procedure for such
scenes. Using typical assumptions or priors from 3D graphics, many tasks that seem
unsolvable with conventional methods yield reasonable results in tasks involving scenes
with humans. We know not only the structure of a human (e.g. skeleton) but also their
basic movements, which further simplify the distribution that models need to fit [] and
enable the dynamic scene understanding with the assumption of human presence on
them.
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We explore various ways to introduce inductive bias into the image and 3D static scene
representations. As in the previous example, when training representations of 3D scenes
from a set of images, we leverage the fact that we know how the scene appears from dif-
ferent perspectives and introduce certain constraints on the representation function and
the rendering outputs. The set of constraints and assumptions is the main instrument
employed in this work to facilitate the learning of novel 2D and 3D representations that
are subsequently applied to various problems. We will primarily focus on the three
research topics:

• unsupervised style transfer for images and 2D scene generator without direct in-
terconnections between pixels,

• generalizable and efficient novel view synthesis

• human priors for image and video synthesis

1.1.1 Inductive biases in image representations for style-transfer and pixel-
level generative networks

The problem of style transfer is one of the well-defined for 2D image representation
with a number of different works in recent years we already know how effectively ex-
tract styles from the images [12] or treat content information separately [53]. Many im-
age translation models exploit generative adversarial networks with conditional gen-
erators to inject information about the target attribute or domain [7]. Such generators
are also represented with CNN-based architecture. The deep convolutional networks
were shown to be highly effective in generative modeling. Stylization [13], and super-
resolution [22] tasks were all shown to benefit from using the CNNs generator. Such
models can be used as an efficient vector encoder from the given image [21]. Addition-
ally, the decomposition of the image into content and style representations [29] is an
efficient scheme to edit the style and obtain the desired domain transfer. Most works
target the two-domain setting [58] or a setting with the fixed discrete domains [7]. We
explore the image translation aims to transfer images from one domain to another, when
the difference between the domains is not presented in the dataset (for instance, it can
be difficult to annotate).

To overcome this limitation in this work we design training a generic image-to-image
translation model on an extensive dataset of unaligned images without domain labels
and provide an example that inductive biases from the dataset, network architecture
training procedure may enable desired style transformation.
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Even though the generation of realistic images started with the groundbreaking work [16],
in which generative adversarial networks (GANs) were introduced, always rely on the
architectural inductive bias of CNNs. CNNs inherently assume that nearby pixels are
more related to each other than distant ones, a bias known as local spatial coherence
and texture extraction [28; 8; 14]. Those assumptions are crucial for effectively learn-
ing features from images, as they mirrors the way objects and textures in real-world
2D scenes are typically structured, with related features often being close together. In
more recent generators it was demonstrated the ability to learn the modulated kernel of
convolutional decoder [20; 23; 24] to generate photorealistic plausible images. We intro-
duce the image generator that is based on the simple MLP architecture, and each pixel
is processed independently from others concerning the same noise. These models in-
troduce new possibilities in image processing and have interesting spectral features. By
predicting the color of each pixel independently and using unique coordinate encod-
ings, CIPS showcases an innovative method of image synthesis. This model's design
not only challenges conventional methodologies but also opens the horizon for more
flexible and memory-efficient architectures with the same GAN paradigm.

1.1.2 Generalizable efficient scene representation for novel view synthesis

Such methods demonstrate the importance of the architectural and methodological de-
sign to succeed in some 2D tasks. When we are starting to generate 3D scenes their rep-
resentation for deep learning processing becomes extremely important as mentioned
above. While the CNNs are effective approaches for learning prior over 2D scenes the
direct application for tasks like novel-view synthesis (NVS) [43] or even discriminative
object detection [15] struggle without using architectures that take into account 3D struc-
tures (e.g. PointNet [36? ]). The intuitive solution is to use a representation that is
more friendly for CNN's inductive biases with 2D spatial locality in pixel space. Over
time, various methods have been developed for creating new views. These methods
can be categorized into volumetric [33; 34], mesh-based [59; 45? ; 18], and point-based
approaches [1; 26], all of which generally require significant computational effort for ren-
dering new views, despite their explicit usage of the 3D prior. One alternative with 2D
spatial structure is depth map-based representation often sourced from stereo match-
ing or monocular depth estimation [40]. Another key approach involves multi-layer
semitransparent representations [44] has evolved with deep learning advancements to
directly convert plane sweep volumes into similar representations [57], useful for in-
teractive applications with a set of image-planes. Our work mitigates the memory re-
quirements of the existing MPI representation [57], inspired by the 3D layered tech-
nique [40], with both geometry and color + transparency estimations done using deep
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convolutional networks. For that, we introduce this new paradigm of end-to-end learn-
ing efficient representation for the scene with deep convolutional networks for stereo-
imaging. We evaluate different schemes of parametrization for the network output and
investigate possibilities of using GANs for more plausible images. Moreover, to allevi-
ate per-scene learning or dataset biases we collect our dataset with thousands of static
scenes.

However, the efficient on-device novel-view synthesis can be achieved with the end-to-
end deep convolutional network we are still bounded by the number of input views.
Next, to exted our work we are going to step further by trying to design a model that
will generate a multi-layer representation for efficient scene rendering from an arbitrary
number of views. The naive approach of extending the input of the network with con-
catenation of all possible pairs can be infeasible for a huge set of input images. The
main idea of this is an attention-based neural network that fuses information from all
views into a single scene representation based on the same conception from the above-
mentioned multi-layer representation. To propagate as much information as we can
from the input images we introduce a new technique for forward error propagation
based on the concept from per-scene multi-plane images [11]. This approach unveils
the ability to make a hierarchical improvement over learning-based methods for scene
representation. We also show that despite the simplicity of our representation, we out-
perform methods that take into account view-dependencies and in theory can be more
accurate on some details but in practice, it cannot achieve our quality on the forward-
facing scenes.

1.1.3 Human priors for view and pose synthesis

While introduced above methods for general novel-view synthesis are the incredibly ac-
curate framework for efficient rendering, there is a main limitation with respect to the
captured data is non-rigid scenes. If something moves during capturing on the scene
when we are shooting then the method based on the multi-layer concept will produce
a blur in areas like this, this is caused by the nature of static data. Capturing dynamic
scenes with multi-view cameras is extremely expensive and it is an incredible challenge
to develop methods that support time changes for novel-view synthesis [31; 52]. To
move one step beyond static scenes without using costly way of data capturing we are
trying to focus on the human-specific data, more precisely on the human heads. With
such prior information about the 3D nature of the data, we can learn algorithms on
unsupervised monocular data [55; 41]. Priors methods mostly operate with 2D space
which is a strong simplification and even small tricks about keeping information about
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the 3d structure of the head [47] help to get better quality. We investigate the possi-
bility of incorporating the geometric constraints on a deeper level by applying neural
networks to render and estimate the underlying mesh-based representations. We align
the paradigm of deferred neural rendering [46] with a face parametric model [30] and
extend it to handle full heads without ground-truth 3D annotations (in an unsupervised
way). This allows us to overcome all competitors in speed and 3D consistency for the
re-enactment of human heads.

In the final part of dissertation we investigate the possibility of learning purely un-
supervised models even without explicit 3D face prior. The recent success of latent
avatars [4; 50] demonstrates the possibility to re-enact human portraits even without
3D knowledge at all, unfortunately, it leads to small angles for view-generation. In our
approach, we introduce the explicit 3D volume that learns neural features that can be
rendered into human head image warped to the desired pose. The pose and expression
are disambiguated by the model with self-supervised approaches []. Furthermore, to
make qualitative progress in this field we introduce an unsupervised high-resolution
enhancer, inspired by HiDT from the first part of the work, that generalizes better than
a naive upsampling technique since it operates on the feature level. One of the novelty
of such a method is the use of a high-resolution dataset [25] without paired videos to
improve quality without additional expensive data collection. This method allows us
to prevail over competitors on all resolutions in self- and cross-reenactment tasks.

1.2 Overview

1.2.1 High-resolution Image Translation for Unpaired Data

In recent years image translation networks demonstrated huge abilities for modeling
and editing content. Unfortunately, a carefully curated dataset with always per-pixel
annotations or some subjective meta-information is necessary. The motivation for our
work arises from the limitations of existing image-to-image translation methods, which
typically require at least some domain labels for both training and inference. These
methods have shown success in converting between two predefined paired domains
(e.g. Huang et al. [2018], Isola et al. [2017], Liu et al. [2017], Zhu et al. [2017]) as
well as between multiple domains (Choi et al. [2018], Lee et al. [2018, 2019], Liu et al.
[2019]). However, the requirement for domain labels is a significant constraint, particu-
larly when labels are challenging to define or collect, as is the case with varying times
of day and lighting conditions. To address these challenges FUNIT [32] partially relaxes
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the need for domain labels, using images from the target domain as guidance for trans-
lation in a few-shot setting. However, domain annotations remain necessary during
training. Our work advances beyond this by training a multi-domain image-to-image
translation model on unaligned images without domain labels, using only weak exter-
nal supervision from coarse segmentation maps to boost the performance, which is not
necessary based on numerical evaluation.

Our work includes two primary contributions. First, it demonstrates the feasibility of
training on unpaired datasets by leveraging the internal and inductive biases of the net-
work architecture and the dataset. Second, to ensure fine detail preservation, HiDT com-
bines skip connections [38] with adaptive instance normalizations (AdaIN) [20]. This
architectural choice is a departure from prevalent AdaIN architectures lacking skip con-
nections.

The experimental evaluation of the HiDT model includes comparisons against several
state-of-the-art baselines using objective measures and a user study. The results show
the model's effectiveness in tasks such as photorealistic daytime alteration for landscape
images and its potential for other multi-domain image stylization or recoloring tasks. A
notable aspect of HiDT is addressing the challenge of applying image-to-image trans-
lation at high resolution, which is often computationally prohibitive. The model cir-
cumvents this by proposing an enhancement scheme that adapts the network trained at
medium resolution for high-resolution images.

Overall, the HiDT model presents a method for high-resolution image translation in
scenarios lacking domain labels, a significant step forward in the field of image-to-image
translation. We have substantially outperformed all existing models and provided a
comprehensive evaluation of the model, highlighting its strengths in dealing with high-
resolution images and its versatility in various image manipulation tasks.

1.2.2 Image generators without spatial convolutions

The main building block of all generators has been a deep convolutional network, in
this part we present a study of whether this is necessary and whether we can achieve
the quality of modern generators without the use of directly interacting pixel features.
For many years the architecutres are derived from the DCGAN [37] intuitive model
for the image-decoder network with rare presence of the attention-based models [56].
However, in this work, we focus mainly on the model when the inter-pixel connection
is not possibly inspired by approaches to reproduce individual scenes [34; 42].
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We propose the architecture design that achieves a similar quality of generation to the
state-of-the-art convolutional generator StyleGANv2 [24]. The experiments conducted
to evaluate CIPS involved comparisons with state-of-the-art convolutional generators
like StyleGANv2. The main building block is the periodic activation function to ingest
the information about spatial positions of the pixel (e.g. place in the 2D grid).

These experiments demonstrated the CIPS architecture's similar generation quality and
its unique properties, such as flexibility and efficiency in memory usage. The applica-
tions of CIPS, as indicated by these experiments, extend beyond traditional image gener-
ation tasks, offering new possibilities in fields requiring high-resolution image synthesis
and manipulation without the constraints of spatial convolutions. The novel approach
for image generation unlocks new applications of such networks unfeasible before. We
investigate new spectral properties of our generator, memory-constrained generation,
and tasks where some areas can be oversampled (e.g. super-resolution, foveated ren-
dering).

Moreover, we show that our generators can be applied for high-resolution images with
patch-based training approach when we pre-load into memory only parts of the images.
Coordinate grids enable working with complex structures like cylindrical panoramas by
replacing the underlying coordinate system.

1.2.3 Efficient scene representations with adaptive geometry for stereo im-
age

Our primary motivation was the challenge of accurately capturing and representing
complex scenes through stereo images, especially from unconstrained captures. Exist-
ing methods, while effective to a certain extent, fell short in dealing with complex ge-
ometries. This limitation was particularly evident in applications [40] requiring high
levels of detail and realism, such as virtual reality and advanced environment recon-
struction. This work aims to address these limitations by offering a more refined, multi-
layered approach to scene representation, ensuring better accuracy, depth perception,
and visual quality in stereo images. We are motivated by the need to fill a specific gap
in the field of stereo scene representation – the ability to accurately and efficiently pro-
cess complex scenes with varying depths and intricate details. By providing a multi-
layered approach, StereoLayers offers a solution that is more adaptable and capable of
handling the challenges inherent in stereo image processing. This method demonstrates
the strong ability for memory-efficient scene representation for novel-view synthesis.

The evaluation utilized the RealEstate10k and LLFF datasets. Additionally, a new dataset
named SWORD ('Scenes With Occluded Regions' Dataset) was introduced. This dataset
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was specially curated to contain more diverse data with a higher prevalence of occlu-
sions, providing a more challenging benchmark for novel view synthesis methods. The
SWORD dataset was found to be instrumental in training more powerful models despite
its smaller size compared to RealEstate10k

Overall, the outcomes from the experiments demonstrate the effectiveness of the Stere-
oLayers approach in providing high-quality, adaptive, and efficient scene representa-
tions suitable for novel view synthesis, particularly in challenging scenarios involving
complex geometries and occlusions. We compare our approach against existing meth-
ods like StereoMag [57] (using regularly spaced layers) and IBRNet [48] - a more recent
system modeling the radiance field of the scene, and it was observed that the scene-
adaptive geometry utilized in the StereoLayers approach resulted in better quality for
novel view synthesis compared to non-adaptive geometry methods.

1.2.4 Self-improving adaptive scene representation images for novel view
synthesis

While the efficient novel-view synthesis system can be designed for stereo input, it is
a clear limitation to surpass the existing method. In this work, we focus on improving
the quality of the multi-layer representation and unlocking the possibility to estimate
such representation from the arbitrary number of images. Additionally, we develop
a system that not only produces high-quality scene representations but also continu-
ously improves its performance through learning and adaptation with feed-forward
error propagation inspired by DeepView [11].

To achieve accurate scene reconstruction we begin with the prediction of a low-resolution
fronto-parallel semi-trasparent planes [44; 57] that contains the main part of the scene
geometry. As it was shown in our previous work the necessity of dense geometry is re-
dundant and the scene can be represented more accurately with a much lower number
of parameters. Based on this idea we define the conversation of the predicted planes
into deformable layers in an end-to-end manner. This transformation is a key aspect
of the SIMPLI method, enabling more flexible and accurate scene representations. A
significant feature of SIMPLI is its feed-forward refinement procedure, which corrects
the estimated representation by aggregating information from input views. This self-
improving mechanism ensures that the method continually enhances its accuracy and
quality of representation.
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Unlike many other methods, SIMPLI does not require any fine-tuning when processing
new scenes. This makes the method more practical and versatile for different applica-
tions. Overall, we demonstrate an efficient method with all the benefits from StereoLay-
ers and more accurate scene estimation from any number of input views, based on com-
parison with existing state-of-the-art methods our representation takes the best from all
of them and produces on-par quality for different domains. The one limitation that we
ignore in this study of multi-layer geometry is dynamic scenes, the naive approach here
will be data-driven video interpolation between frames [3]. Another existing drawback
is view-dependent information that we ignore to achieve real-time on-device render-
ing [51].

1.2.5 One-shot Mesh-based Head Avatars

While standard image-to-image translation methods were able to address the problem
of avatar creation for individual subjects [47; 55] or even portraits, such approaches still
require a large amount of training data and difficult to train [49]. Inspired by the efficient
integration of texture and adaptive geometry in the previous chapter, and recent success
in neural rendering [46; 34] we tackle the problem of synthesizing personalized avatars.
One limitation of existing methods, trained on large monocular video corpuses, is a
small field of view and limited or intractable control of emotion and pose. This cannot
be overcome without prior knowledge of 3D head geometry.

The method behind the Realistic One-shot Mesh-based Head Avatars (ROME) integrates
neural networks to render photorealistic 3D human head models from just a single pho-
tograph. Our system employs the DECA [10] for accurate face and 3D pose estimation.
This crucial phase ensures that the facial features are reconstructed with high fidelity,
laying a foundation for the subsequent steps. The next step involves the reconstruction
of the head mesh, here we predict personalized mesh for non-facial regions, extending
the reconstruction beyond the facial area to include the whole head. The next step in-
volves rendering the personalized head mesh using the estimated neural texture [46; 47].
This step is where the head avatar gains its photorealistic quality, bridging the gap be-
tween a 2D image and a 3D model.

The ROME system represents a significant advancement in creating realistic, one-shot
mesh-based human head avatars. It outperforms existing methods in head geometry
recovery and rendering quality, especially in cross- and self-driving scenarios. The sys-
tem's ability to work without direct 3D supervision and its compatibility with existing
FLAME head models are particularly notable. Future work might explore addressing
current limitations such as the handling of long hair and scalability to various scales.
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Despite its advancements, ROME has limitations, including challenges in modeling cer-
tain complex features like long hair and clothing, and a bias towards frontal views due
to dataset limitations. Moreover, due to the lack of details in the geometry [10], we
cannot model high-resolution images using the same approaches without any tricks.

1.2.6 One-shot High-resolution Neural Head Avatars

Having direct control of the model is very convenient for several VR applications. How-
ever, such models have a very strong dependence on the underlying geometry model
(e.g. FLAME [9]) that leads to restriction of emotion and pose space. Despite the ex-
isting fast latent image-to-image models for human heads [55; 54] we introduce the 3D
inductive bias into the latent space. First, we define the canonical information for each
person that can be extracted from arbitrary images, and then, disentangle the emotion
and pose information [4] to produce neutral canonical features using the self-supervised
learning of latent motion. Finally, we present a novel approach to significantly enhance
the quality of a single-image reenactment module by integrating high-resolution image
dataset [24] into the training process similar to the first chapter. The main idea is to
preserve features for the identity and train a model in a self-supervised way [6] when
we do not have direct access to the re-posed images. This new training paradigm al-
lows us to achieve a high-resolution one-shot reenactment. The experiments show that
the proposed method is overall on par in self-driving mode when the emotion is ex-
tracted from the same identity as the input image, and succeed all existing methods in
the cross-driving scenario.
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Conclusion

In this work, several methods for the synthesis of images and 3D scenes have been in-
troduced. The main theme that unifies the work is the direct incorporation of inductive
assumptions about the data, the task, and the world into the synthesis methods them-
selves. This approach enables the learning of representations directly from the data,
which are then applicable in further contexts.

The key contributions of this work are as follows:

1. Image Translation: High-resolution image translation for unpaired data has been
established as a crucial area, enhancing traditional style transfer with new tech-
niques.

2. Image Generation: A new approach for image generation has been introduced,
which departs from traditional convolutional biases and enables advanced capa-
bilities like content recognition, foveated rendering, and image inpainting.

3. View Synthesis: Techniques for efficient view synthesis have been proposed, uti-
lizing a sparse set of images to reconstruct 3D scenes, which reduces computa-
tional load and increases adaptability to different scenes.

4. Head Avatars: Progress has been made on one-shot head avatars in two main
directions: generative avatars that learn the 3D head and its motion, and mesh-
based avatars that apply a facial prior directly.

Potential future directions include:

• Extending novel-view synthesis to dynamic scenes, tackling the complexities in-
troduced by motion.

• Unifying the best practices from generative and mesh-based avatar approaches to
enhance realism.
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• Expanding the methodologies to encompass full human bodies, despite the chal-
lenges posed by sparse data inputs.

• Bridging classical rendering with learned motion and appearance to create realis-
tic human rendering systems.

The generative modeling approach remains crucial for achieving highly realistic syn-
thesis, with diffusion-based models suggested for generating more diverse and realistic
samples.

In conclusion, the thesis culminates with the exploration of one-shot, high-resolution
neural head avatars, interlacing the themes of high-resolution imaging and digital avatar
creation, and showcasing advanced capabilities in generating detailed and lifelike digi-
tal human models.
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